On Zhang's Semipositive Metrics
Documenta mathematica, Tome 24 (2019), pp. 331-372.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Zhang introduced semipositive metrics on a line bundle of a proper variety. In this paper, we generalize such metrics for a line bundle $L$ of a paracompact strictly $K$-analytic space $X$ over any non-archimedean field $K$. We prove various properties in this setting such as density of piecewise $\mathbb{Q}$-linear metrics in the space of continuous metrics on $L$. If $X$ is proper scheme, then we show that algebraic, formal and piecewise linear metrics are the same. Our main result is that on a proper scheme $X$ over an arbitrary non-archimedean field $K$, the set of semipositive model metrics is closed with respect to pointwise convergence generalizing a result from Boucksom, Favre and Jonsson where $K$ was assumed to be discretely valued with residue characteristic $0$.
Classification : 14G40, 14G22
Keywords: Arakelov geometry, non-Archimedean geometry, model metrics, plurisubharmonic model functions, divisorial points
@article{DOCMA_2019__24__a52,
     author = {Gubler, Walter and Martin, Florent},
     title = {On {Zhang's} {Semipositive} {Metrics}},
     journal = {Documenta mathematica},
     pages = {331--372},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a52/}
}
TY  - JOUR
AU  - Gubler, Walter
AU  - Martin, Florent
TI  - On Zhang's Semipositive Metrics
JO  - Documenta mathematica
PY  - 2019
SP  - 331
EP  - 372
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a52/
LA  - en
ID  - DOCMA_2019__24__a52
ER  - 
%0 Journal Article
%A Gubler, Walter
%A Martin, Florent
%T On Zhang's Semipositive Metrics
%J Documenta mathematica
%D 2019
%P 331-372
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a52/
%G en
%F DOCMA_2019__24__a52
Gubler, Walter; Martin, Florent. On Zhang's Semipositive Metrics. Documenta mathematica, Tome 24 (2019), pp. 331-372. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a52/