Oriented Cohomology Sheaves on Double Moment Graphs
Documenta mathematica, Tome 24 (2019), pp. 563-608.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In the present paper we extend the theory of sheaves on moment graphs due to Braden-MacPherson and Fiebig to the context of an arbitrary oriented equivariant cohomology \texttt{h} (e.g. to algebraic cobordism). We introduce and investigate structure \texttt{h}-sheaves on double moment graphs to describe equivariant oriented cohomology of products of flag varieties. We show that in the case of a total flag variety $X$ of Dynkin type $A$ the space of global sections of the double structure \texttt{h}-sheaf also describes the endomorphism ring of the equivariant \texttt{h}-motive of $X$.
Classification : 14F08, 14F43, 14M15
Keywords: moment graph, equivariant cohomology, motive, projective homogeneous space
@article{DOCMA_2019__24__a46,
     author = {Devyatov, Rostislav and Lanini, Martina and Zainoulline, Kirill},
     title = {Oriented {Cohomology} {Sheaves} on {Double} {Moment} {Graphs}},
     journal = {Documenta mathematica},
     pages = {563--608},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a46/}
}
TY  - JOUR
AU  - Devyatov, Rostislav
AU  - Lanini, Martina
AU  - Zainoulline, Kirill
TI  - Oriented Cohomology Sheaves on Double Moment Graphs
JO  - Documenta mathematica
PY  - 2019
SP  - 563
EP  - 608
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a46/
LA  - en
ID  - DOCMA_2019__24__a46
ER  - 
%0 Journal Article
%A Devyatov, Rostislav
%A Lanini, Martina
%A Zainoulline, Kirill
%T Oriented Cohomology Sheaves on Double Moment Graphs
%J Documenta mathematica
%D 2019
%P 563-608
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a46/
%G en
%F DOCMA_2019__24__a46
Devyatov, Rostislav; Lanini, Martina; Zainoulline, Kirill. Oriented Cohomology Sheaves on Double Moment Graphs. Documenta mathematica, Tome 24 (2019), pp. 563-608. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a46/