Higher Zigzag Algebras
Documenta mathematica, Tome 24 (2019), pp. 749-814.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Given a Koszul algebra of finite global dimension we define its higher zigzag algebra as a twisted trivial extension of the Koszul dual. If our original algebra is the path algebra of a tree-type quiver, this construction recovers the zigzag algebras of Huerfano-Khovanov. We study examples of higher zigzag algebras coming from Iyama's type A higher representation finite algebras, give their presentations by quivers and relations, and describe relations between spherical twists acting on their derived categories. We connect this to the McKay correspondence in higher dimensions: if $G$ is a finite abelian subgroup of $SL_{d+1}$ then these relations occur between spherical twists for $G$-equivariant sheaves on affine $(d+1)$-space.
Classification : 16D50, 16G20, 18E30, 16E35, 16W55, 14F05
Keywords: trivial extension, braid group action, spherical twist, quiver, derived category, Koszul algebra, cluster tilting, equivariant sheaves
@article{DOCMA_2019__24__a42,
     author = {Grant, Joseph},
     title = {Higher {Zigzag} {Algebras}},
     journal = {Documenta mathematica},
     pages = {749--814},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a42/}
}
TY  - JOUR
AU  - Grant, Joseph
TI  - Higher Zigzag Algebras
JO  - Documenta mathematica
PY  - 2019
SP  - 749
EP  - 814
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a42/
LA  - en
ID  - DOCMA_2019__24__a42
ER  - 
%0 Journal Article
%A Grant, Joseph
%T Higher Zigzag Algebras
%J Documenta mathematica
%D 2019
%P 749-814
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a42/
%G en
%F DOCMA_2019__24__a42
Grant, Joseph. Higher Zigzag Algebras. Documenta mathematica, Tome 24 (2019), pp. 749-814. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a42/