Completeness: When Enough is Enough
Documenta mathematica, Tome 24 (2019), pp. 899-914.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We investigate the notion of a complete enough metric space that, while classically vacuous, in a constructive setting allows for the generalisation of many theorems to a much wider class of spaces. In doing so, this notion also brings the known body of constructive results significantly closer to that of classical mathematics. Most prominently, we generalise the Kreisel-Lacome-Shoenfield Theorem/Tseytin's Theorem on the continuity of functions in recursive mathematics.
Classification : 03F60, 03D78, 03F55
Keywords: constructive mathematics, computable analysis, completeness
@article{DOCMA_2019__24__a39,
     author = {Diener, Hannes and Hendtlass, Matthew},
     title = {Completeness: {When} {Enough} is {Enough}},
     journal = {Documenta mathematica},
     pages = {899--914},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a39/}
}
TY  - JOUR
AU  - Diener, Hannes
AU  - Hendtlass, Matthew
TI  - Completeness: When Enough is Enough
JO  - Documenta mathematica
PY  - 2019
SP  - 899
EP  - 914
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a39/
LA  - en
ID  - DOCMA_2019__24__a39
ER  - 
%0 Journal Article
%A Diener, Hannes
%A Hendtlass, Matthew
%T Completeness: When Enough is Enough
%J Documenta mathematica
%D 2019
%P 899-914
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a39/
%G en
%F DOCMA_2019__24__a39
Diener, Hannes; Hendtlass, Matthew. Completeness: When Enough is Enough. Documenta mathematica, Tome 24 (2019), pp. 899-914. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a39/