On an Analogue of the Conjecture of Birch and Swinnerton-Dyer for Abelian Schemes over Higher Dimensional Bases over Finite Fields
Documenta mathematica, Tome 24 (2019), pp. 915-993.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We formulate an analogue of the conjecture of Birch and Swinnerton-Dyer for Abelian schemes with everywhere good reduction over higher dimensional bases over finite fields of characteristic $p$. We prove the prime-to-$p$ part conditionally on the finiteness of the $p$-primary part of the Tate-Shafarevich group or the equality of the analytic and the algebraic rank. If the base is a product of curves, Abelian varieties and K3 surfaces, we prove the prime-to-$p$ part of the conjecture for constant or isoconstant Abelian schemes, in particular the prime-to-$p$ part for (1) relative elliptic curves with good reduction or (2) Abelian schemes with constant isomorphism type of $\mathscr{A}[p]$ or (3) Abelian schemes with supersingular generic fibre, and the full conjecture for relative elliptic curves with good reduction over curves and for constant Abelian schemes over arbitrary bases. We also reduce the conjecture to the case of surfaces as the basis.
Classification : 11G40, 11G50, 19F27, 11G10, 14F20, 14K15
Keywords: $L$-functions of varieties over global field, Birch and Swinnerton-Dyer conjecture, higher regulators, étale and other Grothendieck topologies and cohomologies, arithmetic ground fields
@article{DOCMA_2019__24__a38,
     author = {Keller, Timo},
     title = {On an {Analogue} of the {Conjecture} of {Birch} and {Swinnerton-Dyer} for {Abelian} {Schemes} over {Higher} {Dimensional} {Bases} over {Finite} {Fields}},
     journal = {Documenta mathematica},
     pages = {915--993},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a38/}
}
TY  - JOUR
AU  - Keller, Timo
TI  - On an Analogue of the Conjecture of Birch and Swinnerton-Dyer for Abelian Schemes over Higher Dimensional Bases over Finite Fields
JO  - Documenta mathematica
PY  - 2019
SP  - 915
EP  - 993
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a38/
LA  - en
ID  - DOCMA_2019__24__a38
ER  - 
%0 Journal Article
%A Keller, Timo
%T On an Analogue of the Conjecture of Birch and Swinnerton-Dyer for Abelian Schemes over Higher Dimensional Bases over Finite Fields
%J Documenta mathematica
%D 2019
%P 915-993
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a38/
%G en
%F DOCMA_2019__24__a38
Keller, Timo. On an Analogue of the Conjecture of Birch and Swinnerton-Dyer for Abelian Schemes over Higher Dimensional Bases over Finite Fields. Documenta mathematica, Tome 24 (2019), pp. 915-993. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a38/