The Mean Curvature of Transverse Kähler Foliations
Documenta mathematica, Tome 24 (2019), pp. 995-1031.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study properties of the mean curvature one-form and its holomorphic and antiholomorphic cousins on a transverse Kähler foliation. If the mean curvature of the foliation is automorphic, then there are some restrictions on basic cohomology similar to that on Kähler manifolds, such as the requirement that the odd basic Betti numbers must be even. However, the full Hodge diamond structure does not apply to basic Dolbeault cohomology unless the foliation is taut.
Classification : 53C12, 53C21, 53C55, 57R30, 58J50
Keywords: Riemannian foliation, transverse Kähler foliation, Lefschetz decomposition, mean curvature
@article{DOCMA_2019__24__a37,
     author = {Jung, Seoung Dal and Richardson, Ken},
     title = {The {Mean} {Curvature} of {Transverse} {K\"ahler} {Foliations}},
     journal = {Documenta mathematica},
     pages = {995--1031},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a37/}
}
TY  - JOUR
AU  - Jung, Seoung Dal
AU  - Richardson, Ken
TI  - The Mean Curvature of Transverse Kähler Foliations
JO  - Documenta mathematica
PY  - 2019
SP  - 995
EP  - 1031
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a37/
LA  - en
ID  - DOCMA_2019__24__a37
ER  - 
%0 Journal Article
%A Jung, Seoung Dal
%A Richardson, Ken
%T The Mean Curvature of Transverse Kähler Foliations
%J Documenta mathematica
%D 2019
%P 995-1031
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a37/
%G en
%F DOCMA_2019__24__a37
Jung, Seoung Dal; Richardson, Ken. The Mean Curvature of Transverse Kähler Foliations. Documenta mathematica, Tome 24 (2019), pp. 995-1031. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a37/