The Syntomic Realization of the Elliptic Polylogarithm via the Poincaré Bundle
Documenta mathematica, Tome 24 (2019), pp. 1099-1134.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We give an explicit description of the syntomic elliptic polylogarithm on the universal elliptic curve over the ordinary locus of the modular curve in terms of certain $p$-adic analytic moment functions associated to Katz' two-variable $p$-adic Eisenstein measure. The present work generalizes previous results of Bannai-Kobayashi-Tsuji and Bannai-Kings on the syntomic Eisenstein classes.
Classification : 11G55, 14H52, 14F30, 11F33
Keywords: syntomic cohomology, elliptic polylogarithm, \(p\)-adic modular forms
@article{DOCMA_2019__24__a35,
     author = {Sprang, Johannes},
     title = {The {Syntomic} {Realization} of the {Elliptic} {Polylogarithm} via the {Poincar\'e} {Bundle}},
     journal = {Documenta mathematica},
     pages = {1099--1134},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a35/}
}
TY  - JOUR
AU  - Sprang, Johannes
TI  - The Syntomic Realization of the Elliptic Polylogarithm via the Poincaré Bundle
JO  - Documenta mathematica
PY  - 2019
SP  - 1099
EP  - 1134
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a35/
LA  - en
ID  - DOCMA_2019__24__a35
ER  - 
%0 Journal Article
%A Sprang, Johannes
%T The Syntomic Realization of the Elliptic Polylogarithm via the Poincaré Bundle
%J Documenta mathematica
%D 2019
%P 1099-1134
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a35/
%G en
%F DOCMA_2019__24__a35
Sprang, Johannes. The Syntomic Realization of the Elliptic Polylogarithm via the Poincaré Bundle. Documenta mathematica, Tome 24 (2019), pp. 1099-1134. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a35/