$K$-Theory of Non-Archimedean Rings. I
Documenta mathematica, Tome 24 (2019), pp. 1365-1411.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We introduce a variant of homotopy $K$-theory for Tate rings, which we call \textit{analytic $K$-theory}. It is homotopy invariant with respect to the analytic affine line viewed as an ind-object of closed disks of increasing radii. Under a certain regularity assumption we prove an analytic analog of the Bass fundamental theorem and we compare analytic $K$-theory with continuous $K$-theory, which is defined in terms of models. Along the way we also prove some results about the algebraic $K$-theory of Tate rings.
Classification : 19D25, 14G22
Keywords: continuous \(K\)-theory, affinoid algebras
@article{DOCMA_2019__24__a28,
     author = {Kerz, Moritz and Saito, Shuji and Tamme, Georg},
     title = {\(K\)-Theory of {Non-Archimedean} {Rings.} {I}},
     journal = {Documenta mathematica},
     pages = {1365--1411},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a28/}
}
TY  - JOUR
AU  - Kerz, Moritz
AU  - Saito, Shuji
AU  - Tamme, Georg
TI  - \(K\)-Theory of Non-Archimedean Rings. I
JO  - Documenta mathematica
PY  - 2019
SP  - 1365
EP  - 1411
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a28/
LA  - en
ID  - DOCMA_2019__24__a28
ER  - 
%0 Journal Article
%A Kerz, Moritz
%A Saito, Shuji
%A Tamme, Georg
%T \(K\)-Theory of Non-Archimedean Rings. I
%J Documenta mathematica
%D 2019
%P 1365-1411
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a28/
%G en
%F DOCMA_2019__24__a28
Kerz, Moritz; Saito, Shuji; Tamme, Georg. \(K\)-Theory of Non-Archimedean Rings. I. Documenta mathematica, Tome 24 (2019), pp. 1365-1411. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a28/