Degeneration of Intermediate Jacobians and the Torelli Theorem
Documenta mathematica, Tome 24 (2019), pp. 1739-1767.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Mumford and Newstead generalized the classical Torelli theorem to higher rank, i.e. a smooth, projective curve $X$ is uniquely determined by the second intermediate Jacobian of the moduli space of stable rank $2$ bundles on $X$, with fixed odd degree determinant. In this article we prove the analogous result in the case $X$ is an irreducible nodal curve with one node. As a byproduct, we obtain the degeneration of the second intermediate Jacobians and the associated Néron model of a family of such moduli spaces.
Classification : 14C30, 14C34, 14D07, 32G20, 32S35, 14D20, 14H40
Keywords: Torelli theorem, intermediate Jacobians, Néron models, nodal curves, Gieseker moduli space, limit mixed Hodge structures
@article{DOCMA_2019__24__a21,
     author = {Basu, Suratno and Dan, Ananyo and Kaur, Inder},
     title = {Degeneration of {Intermediate} {Jacobians} and the {Torelli} {Theorem}},
     journal = {Documenta mathematica},
     pages = {1739--1767},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a21/}
}
TY  - JOUR
AU  - Basu, Suratno
AU  - Dan, Ananyo
AU  - Kaur, Inder
TI  - Degeneration of Intermediate Jacobians and the Torelli Theorem
JO  - Documenta mathematica
PY  - 2019
SP  - 1739
EP  - 1767
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a21/
LA  - en
ID  - DOCMA_2019__24__a21
ER  - 
%0 Journal Article
%A Basu, Suratno
%A Dan, Ananyo
%A Kaur, Inder
%T Degeneration of Intermediate Jacobians and the Torelli Theorem
%J Documenta mathematica
%D 2019
%P 1739-1767
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a21/
%G en
%F DOCMA_2019__24__a21
Basu, Suratno; Dan, Ananyo; Kaur, Inder. Degeneration of Intermediate Jacobians and the Torelli Theorem. Documenta mathematica, Tome 24 (2019), pp. 1739-1767. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a21/