Orbifold Products for Higher $K$-Theory and Motivic Cohomology
Documenta mathematica, Tome 24 (2019), pp. 1769-1810.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Due to the work of many authors in the last decades, given an algebraic orbifold (smooth proper Deligne-Mumford stack with trivial generic stabilizer), one can construct its orbifold Chow ring and orbifold Grothendieck ring, and relate them by the orbifold Chern character map, generalizing the fundamental work of Chen-Ruan on orbifold cohomology. In this paper, we extend this theory naturally to higher Chow groups and higher algebraic $K$-theory, mainly following the work of Jarvis-Kaufmann-Kimura and Edidin-Jarvis-Kimura.
Classification : 19E08, 19E15, 14F42, 14C35, 14C15
Keywords: orbifold cohomology, \(K\)-theory, motivic cohomology, Chow rings, hyper-Kähler resolution
@article{DOCMA_2019__24__a20,
     author = {Fu, Lie and Nguyen, Manh Toan},
     title = {Orbifold {Products} for {Higher} {\(K\)-Theory} and {Motivic} {Cohomology}},
     journal = {Documenta mathematica},
     pages = {1769--1810},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a20/}
}
TY  - JOUR
AU  - Fu, Lie
AU  - Nguyen, Manh Toan
TI  - Orbifold Products for Higher \(K\)-Theory and Motivic Cohomology
JO  - Documenta mathematica
PY  - 2019
SP  - 1769
EP  - 1810
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a20/
LA  - en
ID  - DOCMA_2019__24__a20
ER  - 
%0 Journal Article
%A Fu, Lie
%A Nguyen, Manh Toan
%T Orbifold Products for Higher \(K\)-Theory and Motivic Cohomology
%J Documenta mathematica
%D 2019
%P 1769-1810
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a20/
%G en
%F DOCMA_2019__24__a20
Fu, Lie; Nguyen, Manh Toan. Orbifold Products for Higher \(K\)-Theory and Motivic Cohomology. Documenta mathematica, Tome 24 (2019), pp. 1769-1810. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a20/