Tensor Products of Affine and Formal Abelian Groups
Documenta mathematica, Tome 24 (2019), pp. 2525-2582.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper we study tensor products of affine abelian group schemes over a perfect field $k$. We first prove that the tensor product $G_1 \otimes G_2$ of two affine abelian group schemes $G_1,G_2$ over a perfect field $k$ exists. We then describe the multiplicative and unipotent part of the group scheme $G_1 \otimes G_2$. The multiplicative part is described in terms of Galois modules over the absolute Galois group of $k$. We describe the unipotent part of $G_1 \otimes G_2$ explicitly, using Dieudonné theory in positive characteristic. We relate these constructions to previously studied tensor products of formal group schemes.
Classification : 14L17, 16W30, 14L05
Keywords: Dieudonné theory, affine group schemes, tensor products, formal groups
@article{DOCMA_2019__24__a2,
     author = {Bauer, Tilman and Carlson, Magnus},
     title = {Tensor {Products} of {Affine} and {Formal} {Abelian} {Groups}},
     journal = {Documenta mathematica},
     pages = {2525--2582},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a2/}
}
TY  - JOUR
AU  - Bauer, Tilman
AU  - Carlson, Magnus
TI  - Tensor Products of Affine and Formal Abelian Groups
JO  - Documenta mathematica
PY  - 2019
SP  - 2525
EP  - 2582
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a2/
LA  - en
ID  - DOCMA_2019__24__a2
ER  - 
%0 Journal Article
%A Bauer, Tilman
%A Carlson, Magnus
%T Tensor Products of Affine and Formal Abelian Groups
%J Documenta mathematica
%D 2019
%P 2525-2582
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a2/
%G en
%F DOCMA_2019__24__a2
Bauer, Tilman; Carlson, Magnus. Tensor Products of Affine and Formal Abelian Groups. Documenta mathematica, Tome 24 (2019), pp. 2525-2582. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a2/