$p$-Adic Tate Conjectures and Abeloid Varieties
Documenta mathematica, Tome 24 (2019), pp. 1879-1934.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We explore Tate-type conjectures over $p$-adic fields, especially a conjecture of \textit{W. Raskind} [in: Algebra and number theory. Proceedings of the silver jubilee conference, Hyderabad, India, December 11--16, 2003. New Delhi: Hindustan Book Agency. 99--115 (2005; Zbl 1085.14009)] that predicts the surjectivity of
$(\text{NS}(X_{\overline{K}}) \otimes_{\mathbb{Z}}\mathbb{Q}_p)^{G_{K}}\longrightarrow H_{\text{ét}}^2(X_{\overline{K}},\mathbb{Q}_p(1))^{G_{K}}$
if $X$ is smooth and projective over a $p$-adic field $K$ and has totally degenerate reduction. Sometimes, this is related to $p$-adic uniformisation. For abelian varieties, Raskind's conjecture is equivalent to the question whether
$\text{Hom}(A,B)\otimes\mathbb{Q}_p \,\to\, \text{Hom}_{G_{K}}(V_p(A),V_p(B))$
is surjective if $A$ and $B$ are abeloid varieties over a $p$-adic field. \par Using $p$-adic Hodge theory and Fontaine's functors, we reformulate both problems into questions about the interplay of $\mathbb{Q}$-versus $\mathbb{Q}_p$-structures inside filtered $(\varphi,N)$-modules. Finally, we disprove all of these conjectures and questions by showing that they can fail for algebraisable abeloid surfaces, that is, for abelian surfaces with totally degenerate reduction.
Classification : 14F30, 11F80, 14C22, 14K02
Keywords: Tate conjecture, abelian and abeloid varieties, \(p\)-adic fields and \(p\)-adic uniformisation, \(p\)-adic Hodge theory, filtered \((\varphi, N)\)-module, totally degenerate reduction
@article{DOCMA_2019__24__a17,
     author = {Gregory, Oliver and Liedtke, Christian},
     title = {\(p\)-Adic {Tate} {Conjectures} and {Abeloid} {Varieties}},
     journal = {Documenta mathematica},
     pages = {1879--1934},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a17/}
}
TY  - JOUR
AU  - Gregory, Oliver
AU  - Liedtke, Christian
TI  - \(p\)-Adic Tate Conjectures and Abeloid Varieties
JO  - Documenta mathematica
PY  - 2019
SP  - 1879
EP  - 1934
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a17/
LA  - en
ID  - DOCMA_2019__24__a17
ER  - 
%0 Journal Article
%A Gregory, Oliver
%A Liedtke, Christian
%T \(p\)-Adic Tate Conjectures and Abeloid Varieties
%J Documenta mathematica
%D 2019
%P 1879-1934
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a17/
%G en
%F DOCMA_2019__24__a17
Gregory, Oliver; Liedtke, Christian. \(p\)-Adic Tate Conjectures and Abeloid Varieties. Documenta mathematica, Tome 24 (2019), pp. 1879-1934. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a17/