Non-Exactness of Direct Products of Quasi-Coherent Sheaves
Documenta mathematica, Tome 24 (2019), pp. 2037-2056.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

For a noetherian scheme that has an ample family of invertible sheaves, we prove that direct products in the category of quasi-coherent sheaves are not exact unless the scheme is affine. This result can especially be applied to all quasi-projective schemes over commutative noetherian rings. The main tools of the proof are the Gabriel-Popescu embedding and Roos' characterization of Grothendieck categories satisfying Ab6 and Ab4*.
Classification : 14F05, 18E20, 16D90, 16W50, 13C60
Keywords: quasi-coherent sheaf, divisorial scheme, invertible sheaf, direct product, Gabriel-Popescu embedding, Grothendieck category
@article{DOCMA_2019__24__a15,
     author = {Kanda, Ryo},
     title = {Non-Exactness of {Direct} {Products} of {Quasi-Coherent} {Sheaves}},
     journal = {Documenta mathematica},
     pages = {2037--2056},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a15/}
}
TY  - JOUR
AU  - Kanda, Ryo
TI  - Non-Exactness of Direct Products of Quasi-Coherent Sheaves
JO  - Documenta mathematica
PY  - 2019
SP  - 2037
EP  - 2056
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a15/
LA  - en
ID  - DOCMA_2019__24__a15
ER  - 
%0 Journal Article
%A Kanda, Ryo
%T Non-Exactness of Direct Products of Quasi-Coherent Sheaves
%J Documenta mathematica
%D 2019
%P 2037-2056
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a15/
%G en
%F DOCMA_2019__24__a15
Kanda, Ryo. Non-Exactness of Direct Products of Quasi-Coherent Sheaves. Documenta mathematica, Tome 24 (2019), pp. 2037-2056. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a15/