Quivers with Additive Labelings: Classification and Algebraic Entropy
Documenta mathematica, Tome 24 (2019), pp. 2057-2135.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We show that Zamolodchikov dynamics of a recurrent quiver has zero algebraic entropy only if the quiver has a weakly subadditive labeling, and conjecture the converse. By assigning a pair of generalized Cartan matrices of affine type to each quiver with an additive labeling, we completely classify such quivers, obtaining 40 infinite families and 13 exceptional quivers. This completes the program of classifying Zamolodchikov periodic and integrable quivers.
Classification : 13F60, 37K10, 05E99
Keywords: cluster algebras, Zamolodchikov periodicity, T-system, Arnold-Liouville integrability, twisted Dynkin diagrams
@article{DOCMA_2019__24__a14,
     author = {Galashin, Pavel and Pylyavskyy, Pavlo},
     title = {Quivers with {Additive} {Labelings:} {Classification} and {Algebraic} {Entropy}},
     journal = {Documenta mathematica},
     pages = {2057--2135},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a14/}
}
TY  - JOUR
AU  - Galashin, Pavel
AU  - Pylyavskyy, Pavlo
TI  - Quivers with Additive Labelings: Classification and Algebraic Entropy
JO  - Documenta mathematica
PY  - 2019
SP  - 2057
EP  - 2135
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a14/
LA  - en
ID  - DOCMA_2019__24__a14
ER  - 
%0 Journal Article
%A Galashin, Pavel
%A Pylyavskyy, Pavlo
%T Quivers with Additive Labelings: Classification and Algebraic Entropy
%J Documenta mathematica
%D 2019
%P 2057-2135
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a14/
%G en
%F DOCMA_2019__24__a14
Galashin, Pavel; Pylyavskyy, Pavlo. Quivers with Additive Labelings: Classification and Algebraic Entropy. Documenta mathematica, Tome 24 (2019), pp. 2057-2135. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a14/