Real Trace Expansions
Documenta mathematica, Tome 24 (2019), pp. 2159-2202.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper, we investigate trace expansions of operators of the form $A\eta(t\mathcal{L})$ where $\eta:\mathbb{R}\rightarrow\mathbb{C}$ is a Schwartz function, $A$ and $\mathcal L$ are classical pseudo-differential operators on a compact manifold $M$ with $\mathcal L$ elliptic. In particular, we show that, under certain hypotheses, this trace admits an expansion in powers of $t\rightarrow 0^+$. We also relate the constant coefficient to the non-commutative residue and the canonical trace of $A$. Our main tool is the continuous inclusion of the functional calculus of $\mathcal{L}$ into the pseudo-differential calculus whose proof relies on the Helffer-Sjöstrand formula.
Classification : 58J40, 58J42
Keywords: pseudodifferential operators on manifolds, non-commutative residues, canonical trace
@article{DOCMA_2019__24__a12,
     author = {Fischer, V\'eronique},
     title = {Real {Trace} {Expansions}},
     journal = {Documenta mathematica},
     pages = {2159--2202},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a12/}
}
TY  - JOUR
AU  - Fischer, Véronique
TI  - Real Trace Expansions
JO  - Documenta mathematica
PY  - 2019
SP  - 2159
EP  - 2202
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a12/
LA  - en
ID  - DOCMA_2019__24__a12
ER  - 
%0 Journal Article
%A Fischer, Véronique
%T Real Trace Expansions
%J Documenta mathematica
%D 2019
%P 2159-2202
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a12/
%G en
%F DOCMA_2019__24__a12
Fischer, Véronique. Real Trace Expansions. Documenta mathematica, Tome 24 (2019), pp. 2159-2202. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a12/