Matrix Factorizations and Curves in $\mathbb{P}^4$
Documenta mathematica, Tome 23 (2018), pp. 1895-1924.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $C$ be a curve in $\mathbb{P}^4$ and $X$ be a hypersurface containing it. We show how it is possible to construct a matrix factorization on $X$ from the pair $(C,X)$ and, conversely, how a matrix factorization on $X$ leads to curves lying on $X$. We use this correspondence to prove the unirationality of the Hurwitz space $\mathcal{H}_{12,8}$ and the uniruledness of the Brill-Noether space $\mathcal{W}^1_{13,9}$. Several unirational families of curves of genus $16 \leq g \leq 20$ in $\mathbb{P}^4$ are also exhibited.
Classification : 14H10, 14M20, 14Q05, 13D02
Keywords: matrix factorization, moduli of curves, unirationality, Hurwitz space
@article{DOCMA_2018__23__a9,
     author = {Schreyer, Frank-Olaf and Tanturri, Fabio},
     title = {Matrix {Factorizations} and {Curves} in $\mathbb{P}^4$},
     journal = {Documenta mathematica},
     pages = {1895--1924},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a9/}
}
TY  - JOUR
AU  - Schreyer, Frank-Olaf
AU  - Tanturri, Fabio
TI  - Matrix Factorizations and Curves in $\mathbb{P}^4$
JO  - Documenta mathematica
PY  - 2018
SP  - 1895
EP  - 1924
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a9/
LA  - en
ID  - DOCMA_2018__23__a9
ER  - 
%0 Journal Article
%A Schreyer, Frank-Olaf
%A Tanturri, Fabio
%T Matrix Factorizations and Curves in $\mathbb{P}^4$
%J Documenta mathematica
%D 2018
%P 1895-1924
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a9/
%G en
%F DOCMA_2018__23__a9
Schreyer, Frank-Olaf; Tanturri, Fabio. Matrix Factorizations and Curves in $\mathbb{P}^4$. Documenta mathematica, Tome 23 (2018), pp. 1895-1924. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a9/