The $L^2$-Torsion Polytope of Amenable Groups
Documenta mathematica, Tome 23 (2018), pp. 1969-1993.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We introduce the notion of groups of polytope class and show that torsion-free amenable groups satisfying the Atiyah Conjecture possess this property. A direct consequence is the homotopy invariance of the $L^2$-torsion polytope among $G$-CW-complexes for these groups. As another application we prove that the $L^2$-torsion polytope of an amenable group vanishes provided that it contains a non-abelian elementary amenable normal subgroup.
Classification : 20F65, 57Q10, 16S85
Keywords: $L^2$-torsion polytope, amenable groups, polytope class, Atiyah conjecture, $3$-manifolds
@article{DOCMA_2018__23__a7,
     author = {Funke, Florian},
     title = {The $L^2${-Torsion} {Polytope} of {Amenable} {Groups}},
     journal = {Documenta mathematica},
     pages = {1969--1993},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a7/}
}
TY  - JOUR
AU  - Funke, Florian
TI  - The $L^2$-Torsion Polytope of Amenable Groups
JO  - Documenta mathematica
PY  - 2018
SP  - 1969
EP  - 1993
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a7/
LA  - en
ID  - DOCMA_2018__23__a7
ER  - 
%0 Journal Article
%A Funke, Florian
%T The $L^2$-Torsion Polytope of Amenable Groups
%J Documenta mathematica
%D 2018
%P 1969-1993
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a7/
%G en
%F DOCMA_2018__23__a7
Funke, Florian. The $L^2$-Torsion Polytope of Amenable Groups. Documenta mathematica, Tome 23 (2018), pp. 1969-1993. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a7/