Wide Subcategories are Semistable
Documenta mathematica, Tome 23 (2018), pp. 35-47.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

For an arbitrary finite dimensional algebra $\Lambda$, we prove that any wide subcategory of $\mathsf{mod} \Lambda$ satisfying a certain finiteness condition is $\theta$-semistable for some stability condition $\theta$. More generally, we show that wide subcategories of $\mathsf{mod} \Lambda$ associated with two-term presilting complexes of $\Lambda$ are semistable. This provides a complement for Ingalls-Thomas-type bijections for finite dimensional algebras.
Classification : 16G10, 18E30, 18E40, 19A13
Keywords: representation theory of finite dimensional algebras, wide subcategories, semistable subcategories, $\tau$-tilting theory
@article{DOCMA_2018__23__a60,
     author = {Yurikusa, Toshiya},
     title = {Wide {Subcategories} are {Semistable}},
     journal = {Documenta mathematica},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a60/}
}
TY  - JOUR
AU  - Yurikusa, Toshiya
TI  - Wide Subcategories are Semistable
JO  - Documenta mathematica
PY  - 2018
SP  - 35
EP  - 47
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a60/
LA  - en
ID  - DOCMA_2018__23__a60
ER  - 
%0 Journal Article
%A Yurikusa, Toshiya
%T Wide Subcategories are Semistable
%J Documenta mathematica
%D 2018
%P 35-47
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a60/
%G en
%F DOCMA_2018__23__a60
Yurikusa, Toshiya. Wide Subcategories are Semistable. Documenta mathematica, Tome 23 (2018), pp. 35-47. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a60/