On a Construction Due to Khoshkam and Skandalis
Documenta mathematica, Tome 23 (2018), pp. 1995-2025.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper, we consider the Wiener-Hopf algebra, denoted $\mathcal{W}(A,P,G,\alpha)$, associated to an action of a discrete subsemigroup $P$ of a group $G$ on a $C^\ast$-algebra $A$. We show that $\mathcal{W}(A,P,G,\alpha)$ can be represented as a groupoid crossed product. As an application, we show that when $P=\mathbb{F}_{n}^{+}$, the free semigroup on $n$ generators, the $K$-theory of $\mathcal{W}(A,P,G,\alpha)$ and the $K$-theory of $A$ coincides.
Classification : 22A22, 54H20, 43A65, 46L55
Keywords: Wiener-Hopf $C^\ast$-algebras, semigroups, groupoid dynamical systems
@article{DOCMA_2018__23__a6,
     author = {Sundar, S.},
     title = {On a {Construction} {Due} to {Khoshkam} and {Skandalis}},
     journal = {Documenta mathematica},
     pages = {1995--2025},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a6/}
}
TY  - JOUR
AU  - Sundar, S.
TI  - On a Construction Due to Khoshkam and Skandalis
JO  - Documenta mathematica
PY  - 2018
SP  - 1995
EP  - 2025
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a6/
LA  - en
ID  - DOCMA_2018__23__a6
ER  - 
%0 Journal Article
%A Sundar, S.
%T On a Construction Due to Khoshkam and Skandalis
%J Documenta mathematica
%D 2018
%P 1995-2025
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a6/
%G en
%F DOCMA_2018__23__a6
Sundar, S. On a Construction Due to Khoshkam and Skandalis. Documenta mathematica, Tome 23 (2018), pp. 1995-2025. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a6/