On Nonarchimedean Banach Fields
Documenta mathematica, Tome 23 (2018), pp. 171-188.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study the problem of whether a commutative nonarchimedean Banach ring which is algebraically a field can be topologized by a multiplicative norm. This can fail in general, but it holds for uniform Banach rings under some mild extra conditions. Notably, any perfectoid ring whose underlying ring is a field is a perfectoid field.
Classification : 12J25
Keywords: nonarchimedean Banach rings, perfectoid fields
@article{DOCMA_2018__23__a56,
     author = {Kedlaya, Kiran S.},
     title = {On {Nonarchimedean} {Banach} {Fields}},
     journal = {Documenta mathematica},
     pages = {171--188},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a56/}
}
TY  - JOUR
AU  - Kedlaya, Kiran S.
TI  - On Nonarchimedean Banach Fields
JO  - Documenta mathematica
PY  - 2018
SP  - 171
EP  - 188
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a56/
LA  - en
ID  - DOCMA_2018__23__a56
ER  - 
%0 Journal Article
%A Kedlaya, Kiran S.
%T On Nonarchimedean Banach Fields
%J Documenta mathematica
%D 2018
%P 171-188
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a56/
%G en
%F DOCMA_2018__23__a56
Kedlaya, Kiran S. On Nonarchimedean Banach Fields. Documenta mathematica, Tome 23 (2018), pp. 171-188. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a56/