Euler-Like Vector Fields, Deformation Spaces and Manifolds with Filtered Structure
Documenta mathematica, Tome 23 (2018), pp. 293-325.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $M$ be a smooth submanifold of a smooth manifold $V$. Bursztyn, Lima and Meinrenken defined a concept of Euler-like vector field on $V$ associated to the embedding of $M$ into $V$, and proved that there is a bijection between germs of tubular neighborhoods of $M$ and germs of Euler-like vector fields. We shall present a new view of this result by characterizing Euler-like vector fields algebraically and examining their relation to the deformation to the normal cone from algebraic geometry. Then we shall extend our algebraic point of view to smooth manifolds that are equipped with Lie filtrations, and define deformations to the normal cone and Euler-like vector fields in that context. Our algebraic construction of the deformation to the normal cone gives a new approach to Connes' tangent groupoid and its generalizations to filtered manifolds. In addition, Euler-like vector fields give rise to preferred coordinate systems on filtered manifolds.
Classification : 57R40, 53C15
Keywords: deformation to the normal cone, Euler-like vector field, tangent groupoid, filtered manifold
@article{DOCMA_2018__23__a53,
     author = {Haj Saeedi Sadegh, Ahmad Reza and Higson, Nigel},
     title = {Euler-Like {Vector} {Fields,} {Deformation} {Spaces} and {Manifolds} with {Filtered} {Structure}},
     journal = {Documenta mathematica},
     pages = {293--325},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a53/}
}
TY  - JOUR
AU  - Haj Saeedi Sadegh, Ahmad Reza
AU  - Higson, Nigel
TI  - Euler-Like Vector Fields, Deformation Spaces and Manifolds with Filtered Structure
JO  - Documenta mathematica
PY  - 2018
SP  - 293
EP  - 325
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a53/
LA  - en
ID  - DOCMA_2018__23__a53
ER  - 
%0 Journal Article
%A Haj Saeedi Sadegh, Ahmad Reza
%A Higson, Nigel
%T Euler-Like Vector Fields, Deformation Spaces and Manifolds with Filtered Structure
%J Documenta mathematica
%D 2018
%P 293-325
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a53/
%G en
%F DOCMA_2018__23__a53
Haj Saeedi Sadegh, Ahmad Reza; Higson, Nigel. Euler-Like Vector Fields, Deformation Spaces and Manifolds with Filtered Structure. Documenta mathematica, Tome 23 (2018), pp. 293-325. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a53/