HNN Extensions of Quasi-Lattice Ordered Groups and their Operator Algebras
Documenta mathematica, Tome 23 (2018), pp. 327-351.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The Baumslag-Solitar group is an example of an HNN extension. J. Spielberg [J. Lond. Math. Soc., II. Ser. 86, No. 3, 728--754 (2012; Zbl 1264.46040)] showed that it has a natural positive cone, and that it is then a quasi-lattice ordered group in the sense of A. Nica [J. Oper. Theory 27, No. 1, 17--52 (1992; Zbl 0809.46058)]. We give conditions for an HNN extension of a quasi-lattice ordered group $(G,P)$ to be quasi-lattice ordered. In that case, if $(G,P)$ is amenable as a quasi-lattice ordered group, then so is the HNN extension.
Classification : 46L55, 46L05
Keywords: Toeplitz algebras, quasi-lattice order, HNN extension, Baumslag-Solitar groups, amenability
@article{DOCMA_2018__23__a52,
     author = {an Huef, Astrid and Raeburn, Iain and Tolich, Ilija},
     title = {HNN {Extensions} of {Quasi-Lattice} {Ordered} {Groups} and their {Operator} {Algebras}},
     journal = {Documenta mathematica},
     pages = {327--351},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a52/}
}
TY  - JOUR
AU  - an Huef, Astrid
AU  - Raeburn, Iain
AU  - Tolich, Ilija
TI  - HNN Extensions of Quasi-Lattice Ordered Groups and their Operator Algebras
JO  - Documenta mathematica
PY  - 2018
SP  - 327
EP  - 351
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a52/
LA  - en
ID  - DOCMA_2018__23__a52
ER  - 
%0 Journal Article
%A an Huef, Astrid
%A Raeburn, Iain
%A Tolich, Ilija
%T HNN Extensions of Quasi-Lattice Ordered Groups and their Operator Algebras
%J Documenta mathematica
%D 2018
%P 327-351
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a52/
%G en
%F DOCMA_2018__23__a52
an Huef, Astrid; Raeburn, Iain; Tolich, Ilija. HNN Extensions of Quasi-Lattice Ordered Groups and their Operator Algebras. Documenta mathematica, Tome 23 (2018), pp. 327-351. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a52/