Some Non-Special Cubic Fourfolds
Documenta mathematica, Tome 23 (2018), pp. 637-651.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In [20], Ranestad and Voisin showed, quite surprisingly, that the divisor in the moduli space of cubic fourfolds consisting of cubics "apolar to a Veronese surface" is not a Noether-Lefschetz divisor. We give an independent proof of this by exhibiting an explicit cubic fourfold $X$ in the divisor and using point counting methods over finite fields to show $X$ is Noether-Lefschetz general. We also show that two other divisors considered in [20] are not Noether-Lefschetz divisors.
Classification : 14C30, 14D10, 14G10, 14G15, 14J10, 14J28, 14J35, 14Q15
Keywords: cubic fourfolds, computation, Zeta functions, Noether-Lefschetz loci
@article{DOCMA_2018__23__a44,
     author = {Addington, Nicolas and Auel, Asher},
     title = {Some {Non-Special} {Cubic} {Fourfolds}},
     journal = {Documenta mathematica},
     pages = {637--651},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a44/}
}
TY  - JOUR
AU  - Addington, Nicolas
AU  - Auel, Asher
TI  - Some Non-Special Cubic Fourfolds
JO  - Documenta mathematica
PY  - 2018
SP  - 637
EP  - 651
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a44/
LA  - en
ID  - DOCMA_2018__23__a44
ER  - 
%0 Journal Article
%A Addington, Nicolas
%A Auel, Asher
%T Some Non-Special Cubic Fourfolds
%J Documenta mathematica
%D 2018
%P 637-651
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a44/
%G en
%F DOCMA_2018__23__a44
Addington, Nicolas; Auel, Asher. Some Non-Special Cubic Fourfolds. Documenta mathematica, Tome 23 (2018), pp. 637-651. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a44/