A Local-Global Principle for Symplectic $\mathrm K_2$
Documenta mathematica, Tome 23 (2018), pp. 653-675.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We prove that an element of the relative symplectic Steinberg group $g\in\mathrm{StSp}_{2n}(R[t],\,tR[t])$ is trivial if and only if its image under any maximal localisation homomorphism is trivial.
Classification : 19C09
Keywords: symplectic group, Steinberg group, algebraic $K$-theory, local-global principle
@article{DOCMA_2018__23__a43,
     author = {Lavrenov, Andrei},
     title = {A {Local-Global} {Principle} for {Symplectic} $\mathrm K_2$},
     journal = {Documenta mathematica},
     pages = {653--675},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a43/}
}
TY  - JOUR
AU  - Lavrenov, Andrei
TI  - A Local-Global Principle for Symplectic $\mathrm K_2$
JO  - Documenta mathematica
PY  - 2018
SP  - 653
EP  - 675
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a43/
LA  - en
ID  - DOCMA_2018__23__a43
ER  - 
%0 Journal Article
%A Lavrenov, Andrei
%T A Local-Global Principle for Symplectic $\mathrm K_2$
%J Documenta mathematica
%D 2018
%P 653-675
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a43/
%G en
%F DOCMA_2018__23__a43
Lavrenov, Andrei. A Local-Global Principle for Symplectic $\mathrm K_2$. Documenta mathematica, Tome 23 (2018), pp. 653-675. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a43/