Quasi-Homogeneity of the Moduli Space of Stable Maps to Homogeneous Spaces
Documenta mathematica, Tome 23 (2018), pp. 697-745.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $G$ be a connected, simply connected, simple, complex, linear algebraic group. Let $P$ be an arbitrary parabolic subgroup of $G$. Let $X=G/P$ be the $G$-homogeneous projective space attached to this situation. Let $d\in H_2(X)$ be a degree. Let $\overline{M}_{0,3}(X,d)$ be the (coarse) moduli space of three pointed genus zero stable maps to $X$ of degree $d$. We prove under reasonable assumptions on $d$ that $\overline{M}_{0,3}(X,d)$ is quasi-homogeneous under the action of $G$. The essential assumption on $d$ is that $d$ is a minimal degree, i.e. that $d$ is a degree which is minimal with the property that $q^d$ occurs with non-zero coefficient in the quantum product $\sigma_u\star\sigma_v$ of two Schubert classes $\sigma_u$ and $\sigma_v$, where $\star$ denotes the product in the (small) quantum cohomology ring $QH^\ast(X)$ attached to $X$. We prove our main result on quasi-homogeneity by constructing an explicit morphism which has a dense open $G$-orbit in $\overline{M}_{0,3}(X,d)$. To carry out the construction of this morphism, we develop a combinatorial theory of generalized cascades of orthogonal roots which is interesting in its own right.
Classification : 14N10, 14H10, 14M15, 14H45
Keywords: moduli space of stable maps, quasi-homogeneity, homogeneous spaces, curve neighborhoods, minimal degrees in quantum products
@article{DOCMA_2018__23__a41,
     author = {B\"arligea, Christoph Mark},
     title = {Quasi-Homogeneity of the {Moduli} {Space} of {Stable} {Maps} to {Homogeneous} {Spaces}},
     journal = {Documenta mathematica},
     pages = {697--745},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a41/}
}
TY  - JOUR
AU  - Bärligea, Christoph Mark
TI  - Quasi-Homogeneity of the Moduli Space of Stable Maps to Homogeneous Spaces
JO  - Documenta mathematica
PY  - 2018
SP  - 697
EP  - 745
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a41/
LA  - en
ID  - DOCMA_2018__23__a41
ER  - 
%0 Journal Article
%A Bärligea, Christoph Mark
%T Quasi-Homogeneity of the Moduli Space of Stable Maps to Homogeneous Spaces
%J Documenta mathematica
%D 2018
%P 697-745
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a41/
%G en
%F DOCMA_2018__23__a41
Bärligea, Christoph Mark. Quasi-Homogeneity of the Moduli Space of Stable Maps to Homogeneous Spaces. Documenta mathematica, Tome 23 (2018), pp. 697-745. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a41/