Motivic Cohomology of Fat Points in Milnor Range
Documenta mathematica, Tome 23 (2018), pp. 759-798.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We introduce a new algebraic-cycle model for the motivic cohomology theory of truncated polynomials $k[t]/(t^m)$ in one variable. This approach uses ideas from the deformation theory and non-archimedean analysis, and is distinct from the approaches via cycles with modulus. We compute the groups in the Milnor range when the base field is of characteristic 0, and prove that they give the Milnor $K$-groups of $k[t]/(t^m)$, whose relative part is the sum of the absolute Kähler differential forms.
Classification : 14C25, 19D45, 14D15, 11J61
Keywords: algebraic cycle, higher Chow group, motivic cohomology, Milnor $K$-theory
@article{DOCMA_2018__23__a39,
     author = {Park, Jinhyun and \"Unver, Sinan},
     title = {Motivic {Cohomology} of {Fat} {Points} in {Milnor} {Range}},
     journal = {Documenta mathematica},
     pages = {759--798},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a39/}
}
TY  - JOUR
AU  - Park, Jinhyun
AU  - Ünver, Sinan
TI  - Motivic Cohomology of Fat Points in Milnor Range
JO  - Documenta mathematica
PY  - 2018
SP  - 759
EP  - 798
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a39/
LA  - en
ID  - DOCMA_2018__23__a39
ER  - 
%0 Journal Article
%A Park, Jinhyun
%A Ünver, Sinan
%T Motivic Cohomology of Fat Points in Milnor Range
%J Documenta mathematica
%D 2018
%P 759-798
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a39/
%G en
%F DOCMA_2018__23__a39
Park, Jinhyun; Ünver, Sinan. Motivic Cohomology of Fat Points in Milnor Range. Documenta mathematica, Tome 23 (2018), pp. 759-798. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a39/