Abstract $\ell$-Adic 1-Motives and Tate's Canonical Class for Number Fields
Documenta mathematica, Tome 23 (2018), pp. 839-870.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In an earlier paper we constructed a new class of Iwasawa modules as $\ell$-adic realizations of waht we called abstract $\ell$-adic 1-motives in the number field setting. We proved in loc. cit. that the new Iwasawa modules satisfy an equivariant main conjecture. In this paper we link the new modules to the $\ell$-adified Tate canonical class, defined by Tate in 1960 [Ta1] and give an explicit construction of (the minus part og) $\ell$-adic Tate sequences for any Galois CM extension $K/k$ of an arbitrary totally real number field $k$. These explicit constructions are significant and useful in their own right but also due to their applications (via results in [GP2]) to a proof of the minus part of the far reaching Equivariant Tamagawa Number Conjecture for the Artin motive associated to the Galois extension $K/k$.
Classification : 11R23, 11R34, 11R37, 11R42
Keywords: $\ell$-adic 1-motives, $\ell$-adic $L$-function, Tate class, equivariant main conjecture
@article{DOCMA_2018__23__a36,
     author = {Greither, Cornelius and Popescu, Cristian D.},
     title = {Abstract $\ell${-Adic} {1-Motives} and {Tate's} {Canonical} {Class} for {Number} {Fields}},
     journal = {Documenta mathematica},
     pages = {839--870},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a36/}
}
TY  - JOUR
AU  - Greither, Cornelius
AU  - Popescu, Cristian D.
TI  - Abstract $\ell$-Adic 1-Motives and Tate's Canonical Class for Number Fields
JO  - Documenta mathematica
PY  - 2018
SP  - 839
EP  - 870
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a36/
LA  - en
ID  - DOCMA_2018__23__a36
ER  - 
%0 Journal Article
%A Greither, Cornelius
%A Popescu, Cristian D.
%T Abstract $\ell$-Adic 1-Motives and Tate's Canonical Class for Number Fields
%J Documenta mathematica
%D 2018
%P 839-870
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a36/
%G en
%F DOCMA_2018__23__a36
Greither, Cornelius; Popescu, Cristian D. Abstract $\ell$-Adic 1-Motives and Tate's Canonical Class for Number Fields. Documenta mathematica, Tome 23 (2018), pp. 839-870. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a36/