Relative Homological Algebra via Truncations
Documenta mathematica, Tome 23 (2018), pp. 895-937.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

To do homological algebra with unbounded chain complexes one needs to first find a way of constructing resolutions. Spaltenstein solved this problem for chain complexes of $R$-modules by truncating further and further to the left, resolving the pieces, and gluing back the partial resolutions. Our aim is to give a homotopy theoretical interpretation of this procedure, which may be extended to a relative setting. We work in an arbitrary abelian category $\Cal{A}$ and fix a class of "injective objects" $\Cal{I}$. We show that Spaltenstein's construction can be captured by a pair of adjoint functors between unbounded chain complexes and towers of non-positively graded ones. This pair of adjoint functors forms what we call a Quillen pair and the above process of truncations, partial resolutions, and gluing, gives a meaningful way to resolve complexes in a relative setting up to a split error term. In order to do homotopy theory, and in particular to construct a well behaved relative derived category $D(\Cal{A};\Cal{I})$, we need more: the split error term must vanish. This is the case when $\Cal I$ is the class of all injective $R$-modules but not in general, not even for certain classes of injectives modules over a Noetherian ring. The key property is a relative analogue of Roos's AB4$^\ast$-$n$ axiom for abelian categories. Various concrete examples such as Gorenstein homological algebra and purity are also discussed.
Classification : 55U15, 55U35, 18E40, 13D45
Keywords: relative homological algebra, relative resolution, injective class, model category, model approximation, truncation, Noetherian ring, Krull dimension, local cohomology
@article{DOCMA_2018__23__a34,
     author = {Chach\'olski, Wojciech and Neeman, Amnon and Pitsch, Wolfgang and Scherer, J\'er\^ome},
     title = {Relative {Homological} {Algebra} via {Truncations}},
     journal = {Documenta mathematica},
     pages = {895--937},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a34/}
}
TY  - JOUR
AU  - Chachólski, Wojciech
AU  - Neeman, Amnon
AU  - Pitsch, Wolfgang
AU  - Scherer, Jérôme
TI  - Relative Homological Algebra via Truncations
JO  - Documenta mathematica
PY  - 2018
SP  - 895
EP  - 937
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a34/
LA  - en
ID  - DOCMA_2018__23__a34
ER  - 
%0 Journal Article
%A Chachólski, Wojciech
%A Neeman, Amnon
%A Pitsch, Wolfgang
%A Scherer, Jérôme
%T Relative Homological Algebra via Truncations
%J Documenta mathematica
%D 2018
%P 895-937
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a34/
%G en
%F DOCMA_2018__23__a34
Chachólski, Wojciech; Neeman, Amnon; Pitsch, Wolfgang; Scherer, Jérôme. Relative Homological Algebra via Truncations. Documenta mathematica, Tome 23 (2018), pp. 895-937. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a34/