The Motivic Cofiber of $\tau$
Documenta mathematica, Tome 23 (2018), pp. 1077-1127.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Consider the Tate twist $\tau \in H^{0,1}(S^{0,0})$ in the mod 2 cohomology of the motivic sphere. After 2-completion, the motivic Adams spectral sequence realizes this element as a map $\tau:S^{0,-1} \to S^{0,0}$, with cofiber $C\tau$. We show that this motivic 2-cell complex can be endowed with a unique $E_\infty$ ring structure. Moreover, this promotes the known isomorphism $\pi_{\ast,\ast} C\tau \cong \mathrm{Ext}^{\ast,\ast}_{BP_{\ast}BP}(BP_{\ast},BP_{\ast})$ to an isomorphism of rings which also preserves higher products. We then consider the closed symmetric monoidal category of $C\tau$-modules ($_{C\tau}$Mod,$-\wedge_{C\tau}-)$ which lives in the kernel of Betti realization. Given a motivic spectrum $X$, the $C\tau$-induced spectrum $X \wedge C\tau$ is usually better behaved and easier to understand than $X$ itself. We specifically illustrate this concept in the examples of the mod 2 Eilenberg-Maclane spectrum $H\Bbb F_2$, the mod 2 Moore spectrum $S^{0,0}/2$ and the connective hermitian $K$-theory spectrum $kq$.
Classification : 55S10, 14F42, 55P43
Keywords: motivic homotopy theory, cofibre of $\tau$, $E_{\infty}$-structure, motivic cohomology, hermitian $K$-theory
@article{DOCMA_2018__23__a30,
     author = {Gheorghe, Bogdan},
     title = {The {Motivic} {Cofiber} of $\tau$},
     journal = {Documenta mathematica},
     pages = {1077--1127},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a30/}
}
TY  - JOUR
AU  - Gheorghe, Bogdan
TI  - The Motivic Cofiber of $\tau$
JO  - Documenta mathematica
PY  - 2018
SP  - 1077
EP  - 1127
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a30/
LA  - en
ID  - DOCMA_2018__23__a30
ER  - 
%0 Journal Article
%A Gheorghe, Bogdan
%T The Motivic Cofiber of $\tau$
%J Documenta mathematica
%D 2018
%P 1077-1127
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a30/
%G en
%F DOCMA_2018__23__a30
Gheorghe, Bogdan. The Motivic Cofiber of $\tau$. Documenta mathematica, Tome 23 (2018), pp. 1077-1127. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a30/