On Vector-Valued Siegel Modular Forms of Degree 2 and Weight $(j,2)$
Documenta mathematica, Tome 23 (2018), pp. 1129-1156.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We formulate a conjecture that describes the vector-valued Siegel modular forms of degree 2 and level 2 of weight $\mathrm{Sym}^j\otimes\mathrm{det}^2$ and provide some evidence for it. We construct such modular forms of weight $(j,2)$ via covariants of binary sextics and calculate their Fourier expansions illustrating the effectivity of the approach via covariants. Two appendices contain related results of Chenevier; in particular a proof of the fact that every modular form of degree 2 and level 2 and weight $(j,1)$ vanishes.
Classification : 11F46, 11F70, 14J15
Keywords: Siegel modular forms, small weight
@article{DOCMA_2018__23__a29,
     author = {Cl\'ery, Fabien and van der Geer, Gerard},
     title = {On {Vector-Valued} {Siegel} {Modular} {Forms} of {Degree} 2 and {Weight} $(j,2)$},
     journal = {Documenta mathematica},
     pages = {1129--1156},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a29/}
}
TY  - JOUR
AU  - Cléry, Fabien
AU  - van der Geer, Gerard
TI  - On Vector-Valued Siegel Modular Forms of Degree 2 and Weight $(j,2)$
JO  - Documenta mathematica
PY  - 2018
SP  - 1129
EP  - 1156
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a29/
LA  - en
ID  - DOCMA_2018__23__a29
ER  - 
%0 Journal Article
%A Cléry, Fabien
%A van der Geer, Gerard
%T On Vector-Valued Siegel Modular Forms of Degree 2 and Weight $(j,2)$
%J Documenta mathematica
%D 2018
%P 1129-1156
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a29/
%G en
%F DOCMA_2018__23__a29
Cléry, Fabien; van der Geer, Gerard. On Vector-Valued Siegel Modular Forms of Degree 2 and Weight $(j,2)$. Documenta mathematica, Tome 23 (2018), pp. 1129-1156. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a29/