The Complexity of a Flat Groupoid
Documenta mathematica, Tome 23 (2018), pp. 1157-1196.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Grothendieck proved that any finite epimorphism of noetherian schemes factors into a finite sequence of effective epimorphisms. We define the complexity of a flat groupoid $R\rightrightarrows X$ with finite stabilizer to be the length of the canonical sequence of the finite map $R\rightarrow X\times_{X/R} X$, where $X/R$ is the Keel-Mori geometric quotient. For groupoids of complexity at most 1, we prove a theorem of descent along the quotient $X\rightarrow X/R$ and a theorem on the existence of the quotient of a groupoid by a normal subgroupoid. We expect that the complexity could play an important role in the finer study of quotients by groupoids.
Classification : 14A20, 14L15, 14L30
Keywords: groupoids, group schemes, quotients, algebraic spaces, effective epimorphisms, descent
@article{DOCMA_2018__23__a28,
     author = {Romagny, Matthieu and Rydh, David and Zalamansky, Gabriel},
     title = {The {Complexity} of a {Flat} {Groupoid}},
     journal = {Documenta mathematica},
     pages = {1157--1196},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a28/}
}
TY  - JOUR
AU  - Romagny, Matthieu
AU  - Rydh, David
AU  - Zalamansky, Gabriel
TI  - The Complexity of a Flat Groupoid
JO  - Documenta mathematica
PY  - 2018
SP  - 1157
EP  - 1196
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a28/
LA  - en
ID  - DOCMA_2018__23__a28
ER  - 
%0 Journal Article
%A Romagny, Matthieu
%A Rydh, David
%A Zalamansky, Gabriel
%T The Complexity of a Flat Groupoid
%J Documenta mathematica
%D 2018
%P 1157-1196
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a28/
%G en
%F DOCMA_2018__23__a28
Romagny, Matthieu; Rydh, David; Zalamansky, Gabriel. The Complexity of a Flat Groupoid. Documenta mathematica, Tome 23 (2018), pp. 1157-1196. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a28/