Weil-Étale Cohomology and Zeta-Values of Proper Regular Arithmetic Schemes
Documenta mathematica, Tome 23 (2018), pp. 1425-1560.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We give a conjectural description of the vanishing order and leading Taylor coefficient of the Zeta function of a proper, regular arithmetic scheme $\Cal{X}$ at any integer $n$ in terms of Weil-étale cohomology complexes. This extends work of S. Lichtenbaum [Compos. Math. 141, No. 3, 689--702 (2005; Zbl 1073.14024)] and T. Geisser [Math. Ann. 330, No. 4, 665--692 (2004; Zbl 1069.14021)] for $\Cal{X}$ of characteristic $p$, of S. Lichtenbaum [Ann. Math. (2) 170, No. 2, 657--683 (2009; Zbl 1278.14029)] for $\Cal{X}=\mathrm{Spec}(\Cal{O}_F)$ and $n=0$ where $F$ is a number field, and of the second author for arbitrary $\Cal{X}$ and $n=0$ [B. Morin, Duke Math. J. 163, No. 7, 1263--1336 (2014; Zbl 06303878)]. We show that our conjecture is compatible with the Tamagawa number conjecture of S. Bloch and K. Kato [Prog. Math. 86, 333--400 (1990; Zbl 0768.14001)], and J.-M. Fontaine and B. Perrin-Riou [Proc. Symp. Pure Math. 55, 599--706 (1994; Zbl 0821.14013)] if $\Cal{X}$ is smooth over $\mathrm{Spec}(\Cal{O}_F)$, and hence that it holds in cases where the Tamagawa number conjecture is known.
Classification : 14F20, 14F42, 11G40
Keywords: Zeta functions, Zeta-values, Weil-étale cohomology, Arakelov theory
@article{DOCMA_2018__23__a21,
     author = {Flach, Matthias and Morin, Baptiste},
     title = {Weil-\'Etale {Cohomology} and {Zeta-Values} of {Proper} {Regular} {Arithmetic} {Schemes}},
     journal = {Documenta mathematica},
     pages = {1425--1560},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a21/}
}
TY  - JOUR
AU  - Flach, Matthias
AU  - Morin, Baptiste
TI  - Weil-Étale Cohomology and Zeta-Values of Proper Regular Arithmetic Schemes
JO  - Documenta mathematica
PY  - 2018
SP  - 1425
EP  - 1560
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a21/
LA  - en
ID  - DOCMA_2018__23__a21
ER  - 
%0 Journal Article
%A Flach, Matthias
%A Morin, Baptiste
%T Weil-Étale Cohomology and Zeta-Values of Proper Regular Arithmetic Schemes
%J Documenta mathematica
%D 2018
%P 1425-1560
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a21/
%G en
%F DOCMA_2018__23__a21
Flach, Matthias; Morin, Baptiste. Weil-Étale Cohomology and Zeta-Values of Proper Regular Arithmetic Schemes. Documenta mathematica, Tome 23 (2018), pp. 1425-1560. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a21/