Essential Dimension in Mixed Characteristic
Documenta mathematica, Tome 23 (2018), pp. 1587-1600.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $G$ be a finite group, and let $R$ be a discrete valuation ring with residue field $k$ and fraction field $K$. We say that $G$ is weakly tame at a prime $p$ if it has no non-trivial normal $p$-subgroups. By convention, every finite group is weakly tame at $0$. We show that if $G$ is weakly tame at char(k), then $\operatorname{ed}_K(G) \geq \operatorname{ed}_k(G)$. Here $\operatorname{ed}_F(G)$ denotes the essential dimension of $G$ over the field $F$. We also prove a more general statement of this type, for a class of étale gerbes $\mathcal{X}$ over $R$. As a corollary, we show that if $G$ is weakly tame at $p$, then $\operatorname{ed}_{L} G \geq \operatorname{ed}_{k} G$ for any field $L$ of characteristic $0$ and any field $k$ of characteristic $p$, provided that $k$ contains $\overline {\mathbb{F}}_{p}$. We also show that a conjecture of A. Ledet asserting that $\operatorname{ed}_k \mathbb{Z}/p^n \mathbb{Z}) = n$ for a field $k$ of characteristic $p>0$ implies that $\operatorname{ed}_{\mathbb{C}}(G) \geq n$ for any finite group $G$ which is weakly tame at $p$ and contains an element of order $p^n$. To the best of our knowledge, an unconditional proof of the last inequality is out of the reach of all presently known techniques.
Classification : 14A20, 13A18, 13A50
Keywords: essential dimension, Ledet's conjecture, genericity theorem, gerbe, mixed characteristic
@article{DOCMA_2018__23__a19,
     author = {Brosnan, Patrick and Reichstein, Zinovy and Vistoli, Angelo},
     title = {Essential {Dimension} in {Mixed} {Characteristic}},
     journal = {Documenta mathematica},
     pages = {1587--1600},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a19/}
}
TY  - JOUR
AU  - Brosnan, Patrick
AU  - Reichstein, Zinovy
AU  - Vistoli, Angelo
TI  - Essential Dimension in Mixed Characteristic
JO  - Documenta mathematica
PY  - 2018
SP  - 1587
EP  - 1600
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a19/
LA  - en
ID  - DOCMA_2018__23__a19
ER  - 
%0 Journal Article
%A Brosnan, Patrick
%A Reichstein, Zinovy
%A Vistoli, Angelo
%T Essential Dimension in Mixed Characteristic
%J Documenta mathematica
%D 2018
%P 1587-1600
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a19/
%G en
%F DOCMA_2018__23__a19
Brosnan, Patrick; Reichstein, Zinovy; Vistoli, Angelo. Essential Dimension in Mixed Characteristic. Documenta mathematica, Tome 23 (2018), pp. 1587-1600. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a19/