Rost Nilpotence and Free Theories
Documenta mathematica, Tome 23 (2018), pp. 1635-1657.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We introduce coherent cohomology theories $\underline{{h}}$ and prove that if such a theory is moreover generically constant then the Rost nilpotence principle holds for projective homogeneous varieties in the category of $\underline{{h}}$-motives. Examples of such theories are algebraic cobordism and its descendants the free theories.
Classification : 14F42, 14C25
Keywords: algebraic cobordism, motives, projective homogeneous varieties
@article{DOCMA_2018__23__a16,
     author = {Gille, Stefan and Vishik, Alexander},
     title = {Rost {Nilpotence} and {Free} {Theories}},
     journal = {Documenta mathematica},
     pages = {1635--1657},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a16/}
}
TY  - JOUR
AU  - Gille, Stefan
AU  - Vishik, Alexander
TI  - Rost Nilpotence and Free Theories
JO  - Documenta mathematica
PY  - 2018
SP  - 1635
EP  - 1657
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a16/
LA  - en
ID  - DOCMA_2018__23__a16
ER  - 
%0 Journal Article
%A Gille, Stefan
%A Vishik, Alexander
%T Rost Nilpotence and Free Theories
%J Documenta mathematica
%D 2018
%P 1635-1657
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a16/
%G en
%F DOCMA_2018__23__a16
Gille, Stefan; Vishik, Alexander. Rost Nilpotence and Free Theories. Documenta mathematica, Tome 23 (2018), pp. 1635-1657. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a16/