The Log Term in the Bergman and Szegő Kernels in Strictly Pseudoconvex Domains in $\mathbb C^2$
Documenta mathematica, Tome 23 (2018), pp. 1659-1676.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper, we consider bounded strictly pseudoconvex domains $D\subset \mathbb C^2$ with smooth boundary $M=M^3:=\partial D$, and the asymptotic expansion of the Bergman kernel on the diagonal $$K_B\sim \frac{\phi_{B}}{\rho^{n+1}}+\psi_B\log\rho,$$ where $\rho>0$ is a Fefferman defining equation for $D$. The Ramadanov Conjecture states that if the log term $\psi_B$ vanishes to infinite order on $M$, then $M$ is locally spherical. In $\mathbb C^2$, the validity of this conjecture is known and follows from work of Boutet de Monvel, Burns, and Graham; indeed, it suffices that $\psi_B=O(\rho^2)$ locally on $M$ to conclude that $M$ is locally spherical. On the other hand, it is also known that the boundary values alone of the log term $b\psi_B:=(\psi_B)|_M$ on $M$ does not determine the CR geometry of $M$ locally; e.g., the vanishing of $b\psi_B$ on an open subset of $M$ does not imply that $M$ is locally spherical there. The main result in this paper, however, is that if $D\subset \mathbb C^2$ is assumed to have transverse symmetry, then the global vanishing of $b\psi_B$ on $M$ implies that $M$ is locally spherical. A similar result is proved for the Szegő kernel.
Classification : 32T15, 32V15
Keywords: Bergman and Szegő kernels, log term on boundary, Cartan curvature
@article{DOCMA_2018__23__a15,
     author = {Ebenfelt, Peter},
     title = {The {Log} {Term} in the {Bergman} and {Szeg\H{o}} {Kernels} in {Strictly} {Pseudoconvex} {Domains} in $\mathbb C^2$},
     journal = {Documenta mathematica},
     pages = {1659--1676},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a15/}
}
TY  - JOUR
AU  - Ebenfelt, Peter
TI  - The Log Term in the Bergman and Szegő Kernels in Strictly Pseudoconvex Domains in $\mathbb C^2$
JO  - Documenta mathematica
PY  - 2018
SP  - 1659
EP  - 1676
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a15/
LA  - en
ID  - DOCMA_2018__23__a15
ER  - 
%0 Journal Article
%A Ebenfelt, Peter
%T The Log Term in the Bergman and Szegő Kernels in Strictly Pseudoconvex Domains in $\mathbb C^2$
%J Documenta mathematica
%D 2018
%P 1659-1676
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a15/
%G en
%F DOCMA_2018__23__a15
Ebenfelt, Peter. The Log Term in the Bergman and Szegő Kernels in Strictly Pseudoconvex Domains in $\mathbb C^2$. Documenta mathematica, Tome 23 (2018), pp. 1659-1676. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a15/