Cylindrical Wigner Measures
Documenta mathematica, Tome 23 (2018), pp. 1677-1756.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper we study the semiclassical behavior of quantum states acting on the $\mathrm{C}^\ast$-algebra of canonical commutation relations, from a general perspective. The aim is to provide a unified and flexible approach to the semiclassical analysis of bosonic systems. We also give a detailed overview of possible applications of this approach to mathematical problems of both axiomatic relativistic quantum field theories and nonrelativistic many body systems. If the theory has infinitely many degrees of freedom, the set of Wigner measures, i.e. the classical counterpart of the set of quantum states, coincides with the set of all cylindrical measures acting on the algebraic dual of the space of test functions for the field, and this reveals a very rich semiclassical structure compared to the finite-dimensional case. We characterize the cylindrical Wigner measures and the a priori properties they inherit from the corresponding quantum states.
Classification : 81S30, 81Q20, 81S05, 46L99, 47L90
Keywords: infinite dimensional semiclassical analysis, CCR algebra, constructive quantum field theory, Wigner measures
@article{DOCMA_2018__23__a14,
     author = {Falconi, Marco},
     title = {Cylindrical {Wigner} {Measures}},
     journal = {Documenta mathematica},
     pages = {1677--1756},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a14/}
}
TY  - JOUR
AU  - Falconi, Marco
TI  - Cylindrical Wigner Measures
JO  - Documenta mathematica
PY  - 2018
SP  - 1677
EP  - 1756
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a14/
LA  - en
ID  - DOCMA_2018__23__a14
ER  - 
%0 Journal Article
%A Falconi, Marco
%T Cylindrical Wigner Measures
%J Documenta mathematica
%D 2018
%P 1677-1756
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a14/
%G en
%F DOCMA_2018__23__a14
Falconi, Marco. Cylindrical Wigner Measures. Documenta mathematica, Tome 23 (2018), pp. 1677-1756. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a14/