Kähler Geometry on Hurwitz Spaces
Documenta mathematica, Tome 23 (2018), pp. 1829-1861.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The classical Hurwitz space $\mathcal{H}^{n,b}$ is a fine moduli space for simple branched coverings of the Riemann sphere $\mathbb{P}^1$ by compact hyperbolic Riemann surfaces. In the article we study a generalized Weil-Petersson metric on the Hurwitz space, which was introduced in [R. Axelsson et al., Manuscr. Math. 147, No. 1--2, 63--79 (2015; Zbl 1319.32012)]. For this purpose, Horikawa's deformation theory of holomorphic maps is refined in the presence of hermitian metrics in order to single out distinguished representatives. Our main result is a curvature formula for a subbundle of the tangent bundle on the Hurwitz space obtained as a direct image. This covers the case of the curvature of the fibers of the natural map $\mathcal{H}^{n,b} \to \mathcal{M}_g$.
Classification : 32G05, 32G15, 14H15
Keywords: deformations of holomorphic maps, Hurwitz spaces, Weil-Petersson metric
@article{DOCMA_2018__23__a11,
     author = {Naumann, Philipp},
     title = {K\"ahler {Geometry} on {Hurwitz} {Spaces}},
     journal = {Documenta mathematica},
     pages = {1829--1861},
     publisher = {mathdoc},
     volume = {23},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a11/}
}
TY  - JOUR
AU  - Naumann, Philipp
TI  - Kähler Geometry on Hurwitz Spaces
JO  - Documenta mathematica
PY  - 2018
SP  - 1829
EP  - 1861
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a11/
LA  - en
ID  - DOCMA_2018__23__a11
ER  - 
%0 Journal Article
%A Naumann, Philipp
%T Kähler Geometry on Hurwitz Spaces
%J Documenta mathematica
%D 2018
%P 1829-1861
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a11/
%G en
%F DOCMA_2018__23__a11
Naumann, Philipp. Kähler Geometry on Hurwitz Spaces. Documenta mathematica, Tome 23 (2018), pp. 1829-1861. http://geodesic.mathdoc.fr/item/DOCMA_2018__23__a11/