Modular Equalities for Complex Reflection Arrangements
Documenta mathematica, Tome 22 (2017), pp. 135-150.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We compute the combinatorial Aomoto-Betti numbers $\beta_{p}(\Cal A)$ of a complex reflection arrangement. When $\Cal A$ has rank at least 3, we find that $\beta_{p}(\Cal A)\leq 2$, for all primes $p$. Moreover, $\beta_{p}(\Cal A)=0$ if $p>3$, and $\beta_{2}(\Cal A)\neq 0$ if and only if $\Cal A$ is the Hesse arrangement. We deduce that the multiplicity $e_{d}(\Cal A)$ of an order $d$ eigenvalue of the monodromy action on the first rational homology of the Milnor fiber is equal to the corresponding Aomoto-Betti number, when $d$ is prime. We give a uniform combinatorial characterization of the property $e_{d}(\Cal A)\neq 0$, for $2\leq d\leq 4$. We completely describe the monodromy action for full monomial arrangements of rank 3 and 4. We relate $e_{d}(\Cal A)$ and $\beta_{p}(\Cal A)$ to multinets, on an arbitrary arrangement.
Classification : 14F35, 32S55, 20F55, 52C35, 55N25
Keywords: Milnor fibration, hyperplane arrangement, complex reflection groups
@article{DOCMA_2017__22__a48,
     author = {Ma\v{c}inic, Anca Daniela and Papadima, \c{S}tefan and Popescu, Clement Radu},
     title = {Modular {Equalities} for {Complex} {Reflection} {Arrangements}},
     journal = {Documenta mathematica},
     pages = {135--150},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a48/}
}
TY  - JOUR
AU  - Mačinic, Anca Daniela
AU  - Papadima, Ştefan
AU  - Popescu, Clement Radu
TI  - Modular Equalities for Complex Reflection Arrangements
JO  - Documenta mathematica
PY  - 2017
SP  - 135
EP  - 150
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a48/
LA  - en
ID  - DOCMA_2017__22__a48
ER  - 
%0 Journal Article
%A Mačinic, Anca Daniela
%A Papadima, Ştefan
%A Popescu, Clement Radu
%T Modular Equalities for Complex Reflection Arrangements
%J Documenta mathematica
%D 2017
%P 135-150
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a48/
%G en
%F DOCMA_2017__22__a48
Mačinic, Anca Daniela; Papadima, Ştefan; Popescu, Clement Radu. Modular Equalities for Complex Reflection Arrangements. Documenta mathematica, Tome 22 (2017), pp. 135-150. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a48/