Rigidity and Frobenius Structure
Documenta mathematica, Tome 22 (2017), pp. 287-296.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We show that an irreducible ordinary differential equation on the projective line has a Frobenius structure for a power of some prime $p$ if it is rigid in the sense of Katz and satisfies some other reasonable (and necessary) conditions relative to the prime $p$.
Classification : 14F30, 12H25
Keywords: $p$-adic differential equations, overconvergent isocrystals, rigidity
@article{DOCMA_2017__22__a43,
     author = {Crew, Richard},
     title = {Rigidity and {Frobenius} {Structure}},
     journal = {Documenta mathematica},
     pages = {287--296},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a43/}
}
TY  - JOUR
AU  - Crew, Richard
TI  - Rigidity and Frobenius Structure
JO  - Documenta mathematica
PY  - 2017
SP  - 287
EP  - 296
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a43/
LA  - en
ID  - DOCMA_2017__22__a43
ER  - 
%0 Journal Article
%A Crew, Richard
%T Rigidity and Frobenius Structure
%J Documenta mathematica
%D 2017
%P 287-296
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a43/
%G en
%F DOCMA_2017__22__a43
Crew, Richard. Rigidity and Frobenius Structure. Documenta mathematica, Tome 22 (2017), pp. 287-296. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a43/