Cohomological Support and the Geometric Join
Documenta mathematica, Tome 22 (2017), pp. 1593-1614.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $M,N$ be finitely generated modules over a local complete intersection $R$. Assume that all the modules Tor$^R_i(M,N)$ are zero for $i>0$. We prove that the cohomological support of $M\otimes_R N$ (in the sense of Avramov-Buchweitz) is equal to the geometric join of the cohomological supports of $M,N$. This result gives a new connection between two active areas or research, and immediately produces several interesting corollaries. Naturally, it also raises many intriguing new questions about the homological properties of modules over a complete intersection, some of which are investigated in this work.
Classification : 13D07
Keywords: cohomological support
@article{DOCMA_2017__22__a4,
     author = {Dao, Hailong and Sanders, William T.},
     title = {Cohomological {Support} and the {Geometric} {Join}},
     journal = {Documenta mathematica},
     pages = {1593--1614},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a4/}
}
TY  - JOUR
AU  - Dao, Hailong
AU  - Sanders, William T.
TI  - Cohomological Support and the Geometric Join
JO  - Documenta mathematica
PY  - 2017
SP  - 1593
EP  - 1614
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a4/
LA  - en
ID  - DOCMA_2017__22__a4
ER  - 
%0 Journal Article
%A Dao, Hailong
%A Sanders, William T.
%T Cohomological Support and the Geometric Join
%J Documenta mathematica
%D 2017
%P 1593-1614
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a4/
%G en
%F DOCMA_2017__22__a4
Dao, Hailong; Sanders, William T. Cohomological Support and the Geometric Join. Documenta mathematica, Tome 22 (2017), pp. 1593-1614. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a4/