A More General Method to Classify up to Equivariant $KK$-Equivalence
Documenta mathematica, Tome 22 (2017), pp. 423-454.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Using a homological invariant together with an obstruction class in a certain Ext$^{2}$-group, we classify objects in triangulated categories that have projective resolutions of length two. This invariant gives strong classification results for actions of the circle group on $C^\ast$-algebras, $C^\ast$-algebras over finite unique path spaces, and graph $C^\ast$-algebras with finitely many ideals.
Classification : 46L35, 18E30, 19K35, 46L80
Keywords: classification, non-simple $C^\ast$-algebras, $K$-theory, $KK$-theory
@article{DOCMA_2017__22__a39,
     author = {Bentmann, Rasmus and Meyer, Ralf},
     title = {A {More} {General} {Method} to {Classify} up to {Equivariant} $KK${-Equivalence}},
     journal = {Documenta mathematica},
     pages = {423--454},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a39/}
}
TY  - JOUR
AU  - Bentmann, Rasmus
AU  - Meyer, Ralf
TI  - A More General Method to Classify up to Equivariant $KK$-Equivalence
JO  - Documenta mathematica
PY  - 2017
SP  - 423
EP  - 454
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a39/
LA  - en
ID  - DOCMA_2017__22__a39
ER  - 
%0 Journal Article
%A Bentmann, Rasmus
%A Meyer, Ralf
%T A More General Method to Classify up to Equivariant $KK$-Equivalence
%J Documenta mathematica
%D 2017
%P 423-454
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a39/
%G en
%F DOCMA_2017__22__a39
Bentmann, Rasmus; Meyer, Ralf. A More General Method to Classify up to Equivariant $KK$-Equivalence. Documenta mathematica, Tome 22 (2017), pp. 423-454. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a39/