Variety of Power Sums and Divisors in the Moduli Space of Cubic Fourfolds
Documenta mathematica, Tome 22 (2017), pp. 455-504.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We show that a cubic fourfold $F$ that is apolar to a Veronese surface has the property that its variety of power sums $VSP(F,10)$ is singular along a $K3$ surface of genus 20 which is the variety of power sums of a sextic curve. This relates constructions of Mukai and Iliev and Ranestad. We also prove that these cubics form a divisor in the moduli space of cubic fourfolds and that this divisor is not a Noether-Lefschetz divisor. We use this result to prove that there is no nontrivial Hodge correspondence between a very general cubic and its $VSP$.
Classification : 14J70
Keywords: Waring decomposition
@article{DOCMA_2017__22__a38,
     author = {Ranestad, Kristian and Voisin, Claire},
     title = {Variety of {Power} {Sums} and {Divisors} in the {Moduli} {Space} of {Cubic} {Fourfolds}},
     journal = {Documenta mathematica},
     pages = {455--504},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a38/}
}
TY  - JOUR
AU  - Ranestad, Kristian
AU  - Voisin, Claire
TI  - Variety of Power Sums and Divisors in the Moduli Space of Cubic Fourfolds
JO  - Documenta mathematica
PY  - 2017
SP  - 455
EP  - 504
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a38/
LA  - en
ID  - DOCMA_2017__22__a38
ER  - 
%0 Journal Article
%A Ranestad, Kristian
%A Voisin, Claire
%T Variety of Power Sums and Divisors in the Moduli Space of Cubic Fourfolds
%J Documenta mathematica
%D 2017
%P 455-504
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a38/
%G en
%F DOCMA_2017__22__a38
Ranestad, Kristian; Voisin, Claire. Variety of Power Sums and Divisors in the Moduli Space of Cubic Fourfolds. Documenta mathematica, Tome 22 (2017), pp. 455-504. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a38/