Sur les Atomes Automorphes de Longueur 2 de $\bold{GL}_2(\bold{Q}_p)$
Documenta mathematica, Tome 22 (2017), pp. 777-823.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $p>3$ be a prime. The aim of this paper is to give a description of the invariant space, under principal and Iwahori congruence subgroups of arbitrary level, of extensions of generic principal series representations appearing in the $p$-modular local Langlands correspondence for $\bold{GL}_2(\bold{Q}_p)$. As an application we describe Hecke isotypical components of the mod $p$ cohomology of the modular curve over $\bold{Q}$ with deeply ramified level at $p$.
Classification : 22E50, 11F85
Keywords: $p$-modular Langlands program, local-global compatibility, extension of principle series
@article{DOCMA_2017__22__a31,
     author = {Morra, Stefano},
     title = {Sur les {Atomes} {Automorphes} de {Longueur} 2 de $\bold{GL}_2(\bold{Q}_p)$},
     journal = {Documenta mathematica},
     pages = {777--823},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a31/}
}
TY  - JOUR
AU  - Morra, Stefano
TI  - Sur les Atomes Automorphes de Longueur 2 de $\bold{GL}_2(\bold{Q}_p)$
JO  - Documenta mathematica
PY  - 2017
SP  - 777
EP  - 823
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a31/
LA  - en
ID  - DOCMA_2017__22__a31
ER  - 
%0 Journal Article
%A Morra, Stefano
%T Sur les Atomes Automorphes de Longueur 2 de $\bold{GL}_2(\bold{Q}_p)$
%J Documenta mathematica
%D 2017
%P 777-823
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a31/
%G en
%F DOCMA_2017__22__a31
Morra, Stefano. Sur les Atomes Automorphes de Longueur 2 de $\bold{GL}_2(\bold{Q}_p)$. Documenta mathematica, Tome 22 (2017), pp. 777-823. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a31/