Hecke Algebra Isomorphisms and Adelic Points on Algebraic Groups
Documenta mathematica, Tome 22 (2017), pp. 851-871.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $G$ denote a linear algebraic group over $\bold{Q}$ and $K$ and $L$ two number fields. We establish conditions on the group $G$, related to the structure of its Borel groups, under which the existence of a group isomorphism $G(\bold{A}_{K,f}) \cong G(\bold{A}_{L,f})$ over the finite adeles implies that $K$ and $L$ have isomorphic adele rings. Furthermore, if $G$ satisfies these conditions, $K$ or $L$ is a Galois extension of $\bold{Q}$, and $G(\bold{A}_{K,f}) \cong G(\bold{A}_{L,f})$, then $K$ and $L$ are isomorphic as fields. We use this result to show that if for two number fields $K$ and $L$ that are Galois over $\bold{Q}$, the finite Hecke algebras for $\mathrm{GL}(n)$ (for fixed $n \geq 2$) are isomorphic by an isometry for the $L^1$-norm, then the fields $K$ and $L$ are isomorphic. This can be viewed as an analogue in the theory of automorphic representations of the theorem of Neukirch that the absolute Galois group of a number field determines the field, if it is Galois over $\bold{Q}$.
Classification : 11F70, 11R56, 14L10, 20C08, 20G35
Keywords: algebraic groups, adeles, Hecke algebras, arithmetic equivalence
@article{DOCMA_2017__22__a29,
     author = {Cornelissen, Gunther and Karemaker, Valentijn},
     title = {Hecke {Algebra} {Isomorphisms} and {Adelic} {Points} on {Algebraic} {Groups}},
     journal = {Documenta mathematica},
     pages = {851--871},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a29/}
}
TY  - JOUR
AU  - Cornelissen, Gunther
AU  - Karemaker, Valentijn
TI  - Hecke Algebra Isomorphisms and Adelic Points on Algebraic Groups
JO  - Documenta mathematica
PY  - 2017
SP  - 851
EP  - 871
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a29/
LA  - en
ID  - DOCMA_2017__22__a29
ER  - 
%0 Journal Article
%A Cornelissen, Gunther
%A Karemaker, Valentijn
%T Hecke Algebra Isomorphisms and Adelic Points on Algebraic Groups
%J Documenta mathematica
%D 2017
%P 851-871
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a29/
%G en
%F DOCMA_2017__22__a29
Cornelissen, Gunther; Karemaker, Valentijn. Hecke Algebra Isomorphisms and Adelic Points on Algebraic Groups. Documenta mathematica, Tome 22 (2017), pp. 851-871. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a29/