Lie Groups in Quasi-Poisson Geometry and Braided Hopf Algebras
Documenta mathematica, Tome 22 (2017), pp. 953-972.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We extend the notion of Poisson-Lie groups and Lie bialgebras from Poisson to $\frak{g}$-quasi-Poisson geometry and provide a quantization to braided Hopf algebras in the corresponding Drinfeld category. The basic examples of these $\frak{g}$-quasi-Poisson Lie groups are nilpotent radicals of parabolic subgroups. We also provide examples of moment maps in this new context coming from moduli spaces of flat connections on surfaces.
Classification : 53D17, 16T05, 53D55, 16T10
Keywords: Poisson-Lie groups, Lie bialgebras, moment map, deformation quantization, $\mathfrak{g}$-quasi-Poisson groups
@article{DOCMA_2017__22__a26,
     author = {\v{S}evera, Pavol and Valach, Fridrich},
     title = {Lie {Groups} in {Quasi-Poisson} {Geometry} and {Braided} {Hopf} {Algebras}},
     journal = {Documenta mathematica},
     pages = {953--972},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a26/}
}
TY  - JOUR
AU  - Ševera, Pavol
AU  - Valach, Fridrich
TI  - Lie Groups in Quasi-Poisson Geometry and Braided Hopf Algebras
JO  - Documenta mathematica
PY  - 2017
SP  - 953
EP  - 972
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a26/
LA  - en
ID  - DOCMA_2017__22__a26
ER  - 
%0 Journal Article
%A Ševera, Pavol
%A Valach, Fridrich
%T Lie Groups in Quasi-Poisson Geometry and Braided Hopf Algebras
%J Documenta mathematica
%D 2017
%P 953-972
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a26/
%G en
%F DOCMA_2017__22__a26
Ševera, Pavol; Valach, Fridrich. Lie Groups in Quasi-Poisson Geometry and Braided Hopf Algebras. Documenta mathematica, Tome 22 (2017), pp. 953-972. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a26/