Iwasawa Theory and $F$-Analytic Lubin-Tate $(\varphi,\Gamma)$-Modules
Documenta mathematica, Tome 22 (2017), pp. 999-1030.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $K$ be a finite extension of $\bold{Q}p$. We use the theory of $(\varphi,\Gamma)$-modules in the Lubin-Tate setting to construct some corestriction-compatible families of classes in the cohomology of $V$, for certain representations $V$ of $\mathrm{Gal}(\bold{\bar{Q}}/K)$. If in addition $V$ is crystalline, we describe these classes explicitly using Bloch-Kato's exponential maps. This allows us to generalize Perrin-Riou's period map to the Lubin-Tate setting.
Classification : 11R23, 11F80, 11S20
Keywords: $(\varphi,\Gamma)$-modules, étale, overconvergent, analytic, Lubin-Tate towers
@article{DOCMA_2017__22__a24,
     author = {Berger, Laurent and Fourquaux, Lionel},
     title = {Iwasawa {Theory} and $F${-Analytic} {Lubin-Tate} $(\varphi,\Gamma)${-Modules}},
     journal = {Documenta mathematica},
     pages = {999--1030},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a24/}
}
TY  - JOUR
AU  - Berger, Laurent
AU  - Fourquaux, Lionel
TI  - Iwasawa Theory and $F$-Analytic Lubin-Tate $(\varphi,\Gamma)$-Modules
JO  - Documenta mathematica
PY  - 2017
SP  - 999
EP  - 1030
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a24/
LA  - en
ID  - DOCMA_2017__22__a24
ER  - 
%0 Journal Article
%A Berger, Laurent
%A Fourquaux, Lionel
%T Iwasawa Theory and $F$-Analytic Lubin-Tate $(\varphi,\Gamma)$-Modules
%J Documenta mathematica
%D 2017
%P 999-1030
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a24/
%G en
%F DOCMA_2017__22__a24
Berger, Laurent; Fourquaux, Lionel. Iwasawa Theory and $F$-Analytic Lubin-Tate $(\varphi,\Gamma)$-Modules. Documenta mathematica, Tome 22 (2017), pp. 999-1030. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a24/