Vector-Valued Modular Forms and the Gauss Map
Documenta mathematica, Tome 22 (2017), pp. 1063-1080.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We use the gradients of theta functions at odd two-torsion points -- thought of as vector-valued modular forms -- to construct holomorphic differential forms on the moduli space of principally polarized abelian varieties, and to characterize the locus of decomposable abelian varieties in terms of the Gauss images of two-torsion points.
Classification : 11F46, 14K25, 14K10
@article{DOCMA_2017__22__a22,
     author = {Dalla Piazza, Francesco and Fiorentino, Alessio and Grushevsky, Samuel and Perna, Sara and Salvati Manni, Riccardo},
     title = {Vector-Valued {Modular} {Forms} and the {Gauss} {Map}},
     journal = {Documenta mathematica},
     pages = {1063--1080},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a22/}
}
TY  - JOUR
AU  - Dalla Piazza, Francesco
AU  - Fiorentino, Alessio
AU  - Grushevsky, Samuel
AU  - Perna, Sara
AU  - Salvati Manni, Riccardo
TI  - Vector-Valued Modular Forms and the Gauss Map
JO  - Documenta mathematica
PY  - 2017
SP  - 1063
EP  - 1080
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a22/
LA  - en
ID  - DOCMA_2017__22__a22
ER  - 
%0 Journal Article
%A Dalla Piazza, Francesco
%A Fiorentino, Alessio
%A Grushevsky, Samuel
%A Perna, Sara
%A Salvati Manni, Riccardo
%T Vector-Valued Modular Forms and the Gauss Map
%J Documenta mathematica
%D 2017
%P 1063-1080
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a22/
%G en
%F DOCMA_2017__22__a22
Dalla Piazza, Francesco; Fiorentino, Alessio; Grushevsky, Samuel; Perna, Sara; Salvati Manni, Riccardo. Vector-Valued Modular Forms and the Gauss Map. Documenta mathematica, Tome 22 (2017), pp. 1063-1080. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a22/