Automorphisms of a Symmetric Product of a Curve (with an Appendix by Najmuddin Fakhruddin)
Documenta mathematica, Tome 22 (2017), pp. 1181-1192.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $X$ be an irreducible smooth projective curve of genus $g>2$ defined over an algebraically closed field of characteristic different from two. We prove that the natural homomorphism from the automorphisms of $X$ to the automorphisms of the symmetric product $\mathrm{Sym}^d(X)$ is an isomorphism if $d>2g-2$. In an appendix, Fakhruddin proves that the isomorphism class of the symmetric product of a curve determines the isomorphism class of the curve.
Classification : 14H40, 14J50
Keywords: symmetric product, automorphism, Torelli theorem
@article{DOCMA_2017__22__a18,
     author = {Biswas, Indranil and G\'omez, Tom\'as L.},
     title = {Automorphisms of a {Symmetric} {Product} of a {Curve} (with an {Appendix} by {Najmuddin} {Fakhruddin)}},
     journal = {Documenta mathematica},
     pages = {1181--1192},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a18/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - Gómez, Tomás L.
TI  - Automorphisms of a Symmetric Product of a Curve (with an Appendix by Najmuddin Fakhruddin)
JO  - Documenta mathematica
PY  - 2017
SP  - 1181
EP  - 1192
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a18/
LA  - en
ID  - DOCMA_2017__22__a18
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A Gómez, Tomás L.
%T Automorphisms of a Symmetric Product of a Curve (with an Appendix by Najmuddin Fakhruddin)
%J Documenta mathematica
%D 2017
%P 1181-1192
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a18/
%G en
%F DOCMA_2017__22__a18
Biswas, Indranil; Gómez, Tomás L. Automorphisms of a Symmetric Product of a Curve (with an Appendix by Najmuddin Fakhruddin). Documenta mathematica, Tome 22 (2017), pp. 1181-1192. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a18/