Milne's Correcting Factor and Derived De Rham Cohomology. II
Documenta mathematica, Tome 22 (2017), pp. 1303-1321.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Milne's correcting factor, which appears in the Zeta-value at $s=n$ of a smooth projective variety $X$ over a finite field $\Bbb F_q$, is the Euler characteristic of the derived de Rham cohomology of $X/\Bbb{Z}$ modulo the Hodge filtration $F^n$. In this note, we extend this result to arbitrary separated schemes of finite type over $\Bbb F_q$ of dimension at most $d$, provided resolution of singularities for schemes of dimension at most $d$ holds. More precisely, we show that Geisser's generalization of Milne's factor, whenever it is well defined, is the Euler characteristic of the $eh$-cohomology with compact support of the derived de Rham complex relative to $\Bbb Z$ modulo $F^n$.
Classification : 14G10, 14F40, 14G15, 11G25
Keywords: Milne's correcting factor, zeta function, special values, derived de Rham cohomology, cotangent complex, fundamental line, $eh$-topology
@article{DOCMA_2017__22__a12,
     author = {Morin, Baptiste},
     title = {Milne's {Correcting} {Factor} and {Derived} {De} {Rham} {Cohomology.} {II}},
     journal = {Documenta mathematica},
     pages = {1303--1321},
     publisher = {mathdoc},
     volume = {22},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a12/}
}
TY  - JOUR
AU  - Morin, Baptiste
TI  - Milne's Correcting Factor and Derived De Rham Cohomology. II
JO  - Documenta mathematica
PY  - 2017
SP  - 1303
EP  - 1321
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a12/
LA  - en
ID  - DOCMA_2017__22__a12
ER  - 
%0 Journal Article
%A Morin, Baptiste
%T Milne's Correcting Factor and Derived De Rham Cohomology. II
%J Documenta mathematica
%D 2017
%P 1303-1321
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a12/
%G en
%F DOCMA_2017__22__a12
Morin, Baptiste. Milne's Correcting Factor and Derived De Rham Cohomology. II. Documenta mathematica, Tome 22 (2017), pp. 1303-1321. http://geodesic.mathdoc.fr/item/DOCMA_2017__22__a12/