Cup products, the Heisenberg group, and codimension two algebraic cycles
Documenta mathematica, Tome 21 (2016), pp. 1313-1344.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We define higher categorical invariants (gerbes) of codimension two algebraic cycles and provide a categorical interpretation of the intersection of divisors on a smooth algebraic variety. This generalization of the classical relation between divisors and line bundles furnishes a new perspective on the Bloch-Quillen formula.
Classification : 14C25, 14F42, 55P20, 55N15
Keywords: algebraic cycles, gerbes, Heisenberg group, higher categories
@article{DOCMA_2016__21__a9,
     author = {Aldrovandi, Ettore and Ramachandran, Niranjan},
     title = {Cup products, the {Heisenberg} group, and codimension two algebraic cycles},
     journal = {Documenta mathematica},
     pages = {1313--1344},
     publisher = {mathdoc},
     volume = {21},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a9/}
}
TY  - JOUR
AU  - Aldrovandi, Ettore
AU  - Ramachandran, Niranjan
TI  - Cup products, the Heisenberg group, and codimension two algebraic cycles
JO  - Documenta mathematica
PY  - 2016
SP  - 1313
EP  - 1344
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a9/
LA  - en
ID  - DOCMA_2016__21__a9
ER  - 
%0 Journal Article
%A Aldrovandi, Ettore
%A Ramachandran, Niranjan
%T Cup products, the Heisenberg group, and codimension two algebraic cycles
%J Documenta mathematica
%D 2016
%P 1313-1344
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a9/
%G en
%F DOCMA_2016__21__a9
Aldrovandi, Ettore; Ramachandran, Niranjan. Cup products, the Heisenberg group, and codimension two algebraic cycles. Documenta mathematica, Tome 21 (2016), pp. 1313-1344. http://geodesic.mathdoc.fr/item/DOCMA_2016__21__a9/